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Abstract
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1. Introduction

Consistency is a compelling property of many solution concepts for cooperative

games (see, for instance, Harsanyi, 1959; Lensberg, 1988; Maschler, 1990; Thom-

son, 1990). For strategic games consistency of the equilibrium concept is well-

known (e.g. Aumann, 1987) and provides a novel and illuminating characteriza-

tion of the equilibrium concept for strategic games (see Peleg and Tijs, 1996).1

A solution s = (s1, ..., sn) of a game with player set N = {1, ..., n} is consistent

if for every non-empty subset M of N the strategy constellation sM = (si)i∈M
is a solution of the reduced game whose active player set is M whereas all other

players j /∈M are constrained to their strategies sj. Thus in view of the reduced

game players j /∈M have already left after choosing their strategies sj. Intuitively

a consistent solution allows the players in M to reconsider their choice when the

players not in M have already decided. Consistent solutions thus have a decen-

tralization property in the sense of being immune against reconsiderations by

smaller subgroups.2 Clearly, equilibria s are consistent: If one does not want to de-

viate from s in the original game, a unilateral deviation is also unprofitable in the

reduced game. The consistency axiom, optimality and converse consistency (all

consistent strategy constellations have to be included in the solution set) jointly

characterize the equilibrium concept (Peleg and Tijs, 1996).

Recommending to play one of the many possible equilibria is often not very help-

ful.3 More specific advice4, however, requires to select one equilibrium as the
1A more trivial characterization is by optimality and true expectations (see, for instance,

Aumann and Brandenburger, 1995, see also Nash, 1951).
2It is interesting that sequential rationality also applies to subgroups (of agents) but not to

all subgroups (of agents) as required by consistency.
3To illustrate how little is gained by just predicting equilibrium behavior consider the ulti-

matum game. Here a positive sum c can be distributed among player 1 and 2. First player 1
demands d with 0 ≤ d ≤ c. Then player 2 can accept, what yields d for 1 and c− d for 2, or not
what implies 0-payoffs for both. Here (in addition to d = c and general rejection) any allocation
of c among the two players is an equilibrium outcome (the responder, player 2, must reject any
offer below the equilibrium offer which he accepts). The example illustrates the need to select
a unique equilibrium if game theory is supposed to resolve strategic uncertainty.

4Refusing to refine the equilibrium concept (see, for instance, Aumann, 1996) would have to
justify why certain rationality requirements, namely those characterizing the equilibrium con-
cept, are acceptable and more demanding ones not. The axioms characterizing risk dominance
for 2x2-games with two strict equilibria are, for instance, rather convincing (see Harsanyi and
Selten, 1988) and may be supplemented to cover larger classes of games.
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solution of the game or at least to refine the equilibrium notion. A consistent

selection of a unique equilibrium solution is, however, impossible: If a solution

concept satisfies non-emptiness, optimality, and consistency, it must be the equi-

librium concept (Norde, Potters, Reijnierse, Vermeulen, 1996). Thus refining the

concept of equilibria questions either existence for every (finite) game, optimality

or consistency.5 If one wants to maintain that equlibirium refinements and even

selection are reasonable one has to challenge non-emptiness or consistency (since

optimality is hardly debatable).

One escape allows players to “leave” the game in a set-valued way: In the reduced

game the active players i in M do not necessarily know the strategies sj of the

players j /∈M , but only the sets containing them (Dufwenberg, Norde, Reijnierse,

Tijs, 2001). In our view, this sacrifices the decentralization property of consistency,

namely that the behavior of players j /∈ M is already determined in the s,M-

reduced game.

Our approach is two-fold: On the one hand we take the compelling refinement

of strict equilibria which violates non-emptiness but defines a closed subclass of

games for which it is consistent. Solutions of minimal formations coincide with

strict equilibria, whenever the latter ones exist, and avoid non-emptiness. It will

be argued that this questions the practical relevance of “non-emptiness”.

Equilibrium selection poses an even more serious challenge: The strategies of the

“gone” players do not provide enough information to reveal their inclinations how

to select among solution candidates. Usually one selects one equilibrium rather

than another by taking into account the incentives of all players. Players, who

have already “left”, thus must leave some information how “inclined” they are to

rely on a certain equilibrium. Our second attempt is to weaken the consistency

requirement by suggesting a more demanding (more informative) definition of

reduced games.

After introducing some definitions in section 2 the refinement of strict equilibria

is discussed and generalized in section 3, 4 and 5. Equilibrium selection is the

topic of sections 6 and 7. Section 8 concludes.
5A different "attack" against certain equilibrium refinements introduces small noise in sequen-

tial games but neglects mixed strategy-equilibria (see Bagwell, 1995, van Damme and Hurkens,
1997, and Güth, Kirchsteiger, Ritzberger, 1998).

2



2. Definitions

Let G = (S1, ..., Sn; u1 (·) , ..., un (·)) be a finite n-person game in normal form,

e.g. the agent normal form in case of an extensive form game.6 For i = 1, ..., n

the strategy set of player i is Si and ui (s) for all strategy vectors s = (s1, ..., sn) ∈
n×
j=1
Sj the payoff of player i. Let Γ denote the class of games G with n ≥ 1. Since

we are only interested in games with a non-empty set of equilibria, a game G in

Γ is always understood as its mixed extension for which Nash (1951) has proved

non-emptiness.

A solution ϕ (·) for Γ assigns a set ϕ (G) ⊂ S = n×
j=1
Sj to all games G in Γ. For

s ∈ ϕ (G) and M ⊂ N = {1, ..., n} with M �= ∅ the s,M -reduced game of G is

the normal form game Gs,M =
(
(Si)i∈M ; (ũi (·))i∈M

)
with ũi (s̃M) = ui (s̃M , s−M)

for all s̃M ∈ SM = ×
j∈M

Sj where s−M = (sk)k/∈M is the behavior of the non-active

players in Gs,M according to s. If for any G ∈ Γ and any s ∈ ϕ (G) and set M

with ∅ �=M ⊂ N also Gs,M is contained in Γ, the class Γ of games G is ϕ-closed.

The solution ϕ (·) for Γ is consistent if Γ is ϕ-closed and if sM ∈ ϕ (Gs,M) for all

s ∈ ϕ (G) and M with ∅ �=M ⊂ N .

Converse consistency of the solution ϕ (·) for the ϕ-closed class Γ of games

requires that any s with sM ∈ ϕ (Gs,M) for all sets M with ∅ �= M � {1, ..., n}
satisfies s ∈ ϕ (G).

Thus any candidate, which is immune against all ways of reducing the game by

some players becoming non-active, must be an element of the solution set. Since

the Norde et al. (1966) impossibility result does not rely on converse consistency,

it will be largely neglected in the following.

Optimality in one person-games with n = 1 means that the solution ϕ (G) is the

set of all s1 ∈ S1 for which u1 (s1) is maximal, i.e. ϕ (G) = argmax {u1 (s1) : s1 ∈ S1}.
6Introducing strategy trembles, which we partly will also use, is a way to guarantee sequential

rationality in the underlying extensive form game (see Selten, 1975).
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An equilibrium s ∈ G satisfies ui (s) ≥ ui

(
s̃i, (sj)j �=i

)
for all s̃i ∈ Si and i =

1, ..., n. Let E (·) be the solution correspondence on Γ given by the set E (G) of

equilibria for all G ∈ Γ. The theorem of Peleg and Tijs (1996) states that E (·) is
the only solution function on Γ satisfying the three axioms above, i.e. consistency,

converse consistency, and optimality.

Non-emptiness of a solution ϕ (·) on Γ is fulfilled if ϕ (G) �= ∅ for all games

G ∈ Γ. Norde et al. (1996) prove that non-emptiness, optimality7, and consistency

of a solution correspondence ϕ (·) on Γ imply ϕ (·) = E (·). This seems to suggest

that every refinement ϕ (·) of E (·), i.e. every correspondence ϕ with ∅ �= ϕ (G) ⊂
E (G) for all G ∈ Γ with ϕ (G) �= E (G) at least for some games G ∈ Γ, must

violate consistency.

If one accepts that not all equilibria are reasonable, requiring consistency seems

like asking for too much. How important is “non-emptiness”? And is there a

weaker consistency axiom which does not preclude a refinement or selection con-

cept ϕ (·) for Γ?

3. Strict equilibria

For a game G ∈ Γ an equilibrium s ∈ S is strict if for all players i = 1, ..., n and

all strategies s̃i ∈ Si with s̃i �= si one has

ui (s) > ui (s̃i, s−i) .

s2 s12 s22
s1
s11 1, -1 -1, 1
s21 -1, 1 1, -1

Figure 1

7Actually Norde et al. use a weaker version meaning that a non-empty set of optimal strate-
gies is selected in one person-games.
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The matching penny-game in Figure 1 illustrates that a game G ∈ Γ may not

have a strict equilibrium. Let us nevertheless study the subclass Γ∗ ⊂ Γ such

that for all games G in Γ∗ the set E∗ (G) of strict equilibria is non-empty. Since

s ∈ E∗ (G) is strict, every player i ∈ M will lose by unilaterally deviating from

sM in the reduced game Gs,M for all non-empty subsetsM of N , a property which

only holds for strict equilibria. This implies

Proposition 1: For all games G ∈ Γ∗, all strict equilibria s ∈ E∗ (G) and any

M with ∅ �=M ⊂ N :

(i) sM = (si)i∈M ∈ E∗
(
Gs,M

)
and

(ii) Gs,M ∈ Γ∗.

(iii) For the solution function ϕ (·) = E∗ (·) on Γ∗ the
subclass Γ∗ of Γ is ϕ-closed and thus the solution
function ϕ (·) = E∗ (·) on Γ∗ is both, consistent and converse consistent.8

If for any subset M of N with ∅ �= M �= N , any s ∈ E∗ (G) for G ∈ Γ∗ the

cardinality of E∗
(
Gs,M

)
is 1, this even implies that one can consistently select

a unique equilibrium solution s∗ ∈ E∗ (G), namely by simply selecting one strict

equilibrium as the solution of G. This property holds for an important albeit

rather special class of games.9

Unanimity games can be solved by the so-called Nash-bargaining solution (Nash,1953)

which is the first sophisticated attempt of equilibrium selection.10 We will show

8The consistency of E∗ (·) follows from the one of E (·). Since si ∈ E∗
(
Gs,M

)
for allM = {i}

with i ∈ N implies s ∈ E∗ (G), the solution function E∗ (·) is also converse consistent.
9The subclass of unanimity games is important since all systematic attempts of equilibrium

selection up to now satisfy some kind of “Nash-property”, i.e. of selecting the Nash-bargaining
solution in unanimity games. Such concepts are Harsanyi and Selten (1988), Güth and Kalkofen
(1989), Güth (1992), and Harsanyi (1995a and 1995b). A still to be generalized novel approach
is Selten (1995) who starts by solving only bipolar games. Whereas Harsanyi and Selten (1988)
restrict themselves to selecting the (Nash, 1953) bargaining solution for unanimity games with
complete information, Güth and Kalkofen (1989) as well as Harsanyi (1995a and 1995b) try to
satisfy the generalized Nash-property as suggested by Harsanyi and Selten (1972).

10Nash (1953) presents a simple non-cooperative bargaining model and a constructive selection
procedure by which he determines one of its equilibria as the solution (see Güth and Kalkofen,
1989, for a more detailed discussion) in addition to his influential axiomatic characterization.
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that this solution is consistent (see also Lensberg, 1988). An n-person unanimity

game G is defined by
(
K,
(
Uk
)
k∈K

)
where

K = {k1, ..., kL} with L ≥ 2

is a finite index set and where for every k ∈ K the vector

Uk =
(
Uk1 , ..., U

k
n

)
with Uki > 0 for all i and k ∈ K

is the vector of individual payoffs resulting from the unanimous choice of k ∈ K
whereas all players receive 0-payoffs otherwise. Thus the normal form assumes

Si = K and payoffs ui (s) = Uki for s = (k, ..., k) for i = 1, ..., n and 0-payoffs if

at least two players rely on different strategies. Clearly, all unanimous strategy

vectors s = (s1, ..., sn) with si = k for i = 1, ..., n for some k ∈ K are strict

equilibria of the unanimity game G what proves G ∈ Γ∗.

The unanimity game G is called "generic" if there exists an index k∗ ∈ K such

that ∏
i∈N
Uk

∗
i >

∏
i∈N
Uki for all k ∈ K with k �= k∗.

The Nash-bargaining solution (Nash, 1953) of a generic unanimity game(
K,
(
Uk
)
k∈K

)
is the strategy vector s∗ = (k∗, ..., k∗) . Let Γ0 ⊂ Γ∗ be the class of

(generic) unanimity games and define the solution function on Γ0 by ϕ (G) = {s∗}
for all games G ∈ Γ0 by the Nash-bargaining solution s∗ of game G ∈ Γ0.

Proposition 2:

(i) The subclass Γ0 ⊂ Γ is ϕ-closed.

(ii) The Nash-bargaining solution ϕ (·) on Γ0 is consistent,
i.e. for every non-empty subset M of N the vector
k∗M = (s∗i )i∈M with s∗i = k

∗ for all i ∈M is the
Nash-bargaining solution of the s∗,M-reduced game.

Proof: For every G ∈ Γ0 and its Nash-bargaining solution s∗ ∈ E∗ (G) the

games Gs
∗,M for ∅ �= M �= N are like trivial generic unanimity games with just
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one strict equilibrium, namely s∗M . Thus the class Γ0 is ϕ-closed and s∗M is the

Nash-bargaining solution of Gs
∗,M . �

The consistency of strict equilibria is implied by the consistency of equilibria. The

essential message is the ϕ (·)-closedness of Γ0 and the consistency of the Nash-

bargaining solution, i.e. of the special selection concept for unanimity games.

Thus at least for special subclasses of games consistent equilibrium selection is

possible. Since for M �= N the s∗,M -reduced games of G ∈ Γ0 have just one

strict equilibrium, the problem of capturing the inclinations of “gone” players,

when solving the s∗,M -reduced games, does not arise.

This illustrates how by restricting the class of games one can avoid the impos-

sibility theorem of Norde et al. (1996). Our first approach is to generalize the

concept of strict equilibria such that non-emptiness is guaranteed for Γ instead

for Γ∗ only.

4. Solutions of minimal formation

What we question here is the practical relevance of the non-emptiness requirement

of Norde et al. (1996). More specifically, the refinement concept of strict equilib-

ria, whose consistency has just been discussed, will be generalized to demonstrate

the argument. Take G = (S1, ..., Sn; u1 (·) , ..., un (·)) ∈ Γ and consider the game

F = (F1, ..., Fn; u1 (·) |F , ...un (·)|F ) ∈ Γ with strategy sets Fi satisfying

∅ �= Fi ⊂ Si for i = 1, ..., n

and payoff functions ui (·) |F which, for i = 1, ..., n, are the restriction of ui (·) to
the strategy combinations in

F =
n×
i=1
Fi.

If in the context of the larger game G the smaller game F is closed11 with respect

to the best reply correspondence of G we say that F is a formation (or curb set,

11For any mixed strategy vector q = (q1, ...qn) in F , i.e. qj (sj) = 0 for all sj /∈ Fj , all best
replies q∗i in G of all players i = 1, ..., n satisfy q∗i (si) = 0 for all si /∈ Fi.
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see Basu and Weibull, 1991) of G (Harsanyi and Selten, 1988). A formation is

called minimal if it contains no proper subformation. If F ′ and F ′′ are formations

of G, also F ′ ∩ F ′′ is a formation of G if F ′ ∩ F ′′ �= ∅. Thus for any game G ∈ Γ
there exists an unambiguous collection{

F 1, ...FL
}

of minimal formations with L ≥ 1 (since G is a formation of G there exists at

least one minimal formation). If s ∈ E∗ (G), i.e. if s is a strict equilibrium of G,

we identify s with the minimal formation

F (s) =
({s1} , ..., {sn} ; u1 (·) |{s}, ..., un (·) |{s})

of G. By the theorem of Nash (1951) every minimal formation F l with l = 1, ..., L

contains at least one equilibrium which, by the definition of formations, is also an

equilibrium of G. We will later on (in section 5) discuss and try to justify the

Assumption: For all games G ∈ Γ and each minimal formation F l of G we can

define a unique equilibrium solution sl of F l.

Clearly, for all games G ∈ Γ every strict equilibrium s of G is the solution of the

minimal formation {s}. For other minimal formations we so far simply assume

that they can be solved uniquely. For G ∈ Γ the game Gr ∈ Γ results if we

substitute12 its minimal formations F 1, ...FL by their solutions s1, ..., sL, i.e.

Gr = (Sr1, ..., S
r
n; u1 (·) |Sr , ..., un (·) |Sr)

where for all players i = 1, ..., n

(i)
{

if si ∈ Si and si /∈ F l for all l = 1, ..., L, then si ∈ Sri
if si ∈ Si and si ∈ F l for some l = 1, ..., L, then si is substituted by sli ∈ Sri

as well as

(ii) Sr =
n×
i=1
Sri and ui (·) |Sr being the restriction of ui (·) to Sr.

12For the game of matching pennies (Figure 1) with just one minimal formation, namely the
game itself, and just one equilibrium this results in the trivial game where both players must
use their equilibrium strategy since the game has no proper subformation.
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Proposition 3: For all games G ∈ Γ one has Gr ∈ Γ∗, i.e. substituting G by Gr

avoids non-emptiness for ϕ (·) = E∗ (·), if the Assumption holds.

Proof: For everyG ∈ Γ there exists at least one minimal formation F 1 ofG. Thus

by the Assumption Gr of G contains a strategy vector s1 which is the solution

of F 1. If a player i = 1, ..., n unilaterally deviates from s1 in Gr, this implies a

deviation to some strategy si /∈ F 1 according to the definition of Gr. Since F 1 is

closed with respect to best replies, player i must lose, i.e. s1 is a strict equilibrium

in Gr and Gr ∈ Γ∗.�

5. Solving minimal formations

If the assumption in section 4 holds, the non-emptiness of the compelling refine-

ment of strict equilibria seems to be rather minor since we can substitute minimal

formations by their solutions and thereby guarantee existence. Furthermore, the

assumption would be trivially granted if for all games G ∈ Γ all minimal forma-

tions F l have just one equilibrium sl. Although up to now the problem never

occurred in applications, there can be games G ∈ Γ whose minimal formations

contain multiple equilibria. The game G ∈ Γ of Figure 2 has no proper subfor-

mation since all four pure strategies are best replies when the other player uses

all four strategies with equal probability. Thus there exists only one minimal

formation F 1 = G. Furthermore, any strategy vector such that both players use

their 1st and 2nd as well as their 3rd and 4th strategy with equal probability is

an equilibrium. This illustrates

Remark 4: Solving minimal formations can require equilibrium selection.

Selecting an equilibrium solution for a minimal formation with multiple equilibria

poses quite a challenge since, by the definition of a minimal formation, these

equilibria have to be non-strict. It is in these (rare) cases where we must pay
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a price to overcome the problem. What we suggest is to use a familiar idea

when trying to select among non-strict equilibria, namely to induce strictness by

arbitrarily small payoff perturbations (only when solving minimal formations with

multiple equilibria). The non-existence of strict equilibria in minimal formations

F l of a game G ∈ Γ is avoided if one does not solve the game F l directly but as

a limit of payoff perturbed games (see Harsanyi, 1973 and 1975, for an earlier

use of payoff perturbances).

s2 s12 s22 s32 s42
s1
s11 1, -1 -1, 1 0, 0 0, 0
s21 -1, 1 1, -1 0, 0 0, 0
s31 0, 0 0, 0 1, -1 -1, 1
s41 0, 0 0, 0 -1, 1 1, -1

Figure 2

Let for small but positive ε game G (ε) = (S1, ..., Sn; u
ε
1 (·) , ..., uεn (·)) be the ε-

payoff perturbed game of an arbitrary game G = (S1, ..., Sn; u1 (·) , ..., un (·)) ∈ Γ.
Here for i = 1, ..., n and for any mixed strategy vector q = (q1, ..., qn) in G (ε) the

payoff uεi (q) is defined by

uεi (q) = ui (q) + ε
∑
si∈Si

ln qi (si) .

Clearly, as long as ε is positive, any equilibrium qε = (qε1, ..., q
ε
n) of G (ε) will be

strict, i.e. ε-payoff perturbed games G (ε) of G avoid the non-existence of strict

equilibria. Rather than solving G directly one could determine the limit solution

q∗ = lim
ε→0
qε by deriving the solutions qε of its ε-payoff perturbed games G (ε) for

which strict equilibria exist of which one can be selected as the solution of G (ε).

The limit solution q∗ ofG is always an equilibrium of gameG but may not be strict

(see section 7). We thus avoid non-emptiness by allowing for non-strict equilibria

as solution candidates which can be justified as limits of strict equilibria. Possible

emptiness in the sense of Norde et al. (1996) applies only for the limit game
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itself which is just seen as an extreme idealization and therefore of no practical

relevance.

One may object that the ε-perturbed games G (ε) of G are structurally very

different from finite strategic games13. Payoff perturbances are rather ad hoc and

mainly justified by their practical consequence of guaranteeing strictness. We

therefore recommend to limit their application to rare problems where they or

similar ideas seem unavoidable. Practically they matter very little. Altogether

the non-emptiness of ϕ (·) = E∗ (·) seems to be a minor problem if one accepts

the more general idea of solutions of minimal formations whose existence can be

guaranteed.

6. Equilibrium selection

So far we have shown that the non-emptiness of strict equilibria is of minor im-

portance. For games, where the problem is the multiplicity and not the existence

of strict equilibria, a solution function ϕ (·) on Γ with |ϕ (G)| = 1 poses a more

serious problem: To select uniquely and reasonably a solution also in the reduced

games Gs,M with s ∈ ϕ (G) it is often not enough to know the strategies sj of

the “gone players” j /∈ M . Any convincing theory of equilibrium selection will

try to account for the inclinations of all players when selecting one rather than

another solution candidate. The reduced games should therefore not only capture

the strategies of the “gone players” but also their inclinations. We will illustrate

this for the class of binary games with two strict equilibria.

Let G = Γ∗ be an n-person game with

Si = {Xi, Yi} for i = 1, ..., n

13Klaus Ritzberger (personal communication) misses the multi-linearity of the payoffs in the
mixed strategies. Nevertheless most theories of equilibrium selection rely on payoff perturbances
but not necessarily of the same kind (see Nash, 1953, Harsanyi and Selten, 1988, Güth and
Kalkofen, 1989, and Güth, Ritzberger and van Damme, forthcoming).
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and two strict equilibria X = (X1, ..., Xn) and Y = (Y1, ..., Yn) relying on different

strategies for all n players. To illustrate the problems when trying to select consis-

tently a unique equilibrium solution we rely on the simple idea that the solution

should be that strict equilibrium for which the product of unilateral deviation

dividends is maximal (see Güth, 1992).14

Denote for i = 1, ..., n these dividends by

xi = ui (X)− ui (Yi, X−i)

and

yi = ui (Y )− ui (Xi, Y−i)

where X−i = (Xj)j �=i and Y−i = (Yj)j �=i. We say that X is the unilaterally

stable solution15 of G if ∏
i∈N
xi >

∏
i∈N
yi

whereas this solution is Y if the inequality is reversed. A game G for which the

(reversed) inequality holds is called a "generic binary game" with the two strict

equilibria X and Y . Let Γ2 ⊂ Γ∗ denote the subclass of all generic binary games

G with two strict equilibria X and Y .

The usual definition of an s,M -reduced game Gs,M of G implies

Gs,M =
(
(Si)i∈M ,

(
ũs,Mi (·)

)
i∈M

)
with Si = {Xi, Yi} and

ũs,Mi (s̃M) = ui (s̃M , s−M)

for i ∈ M and all strategy constellations s̃M ∈ ×
k∈M

Sk. If ϕ (·) is specified as

the set ϕ (G) = {X} when X is unilaterally stable, and ϕ (G) = {Y } when Y is

unilaterally stable, the subclass Γ2 of Γ∗ is not ϕ-closed since the properly reduced

14For generic unanimity games this general selection idea selects the Nash-bargaining solution
since for s = (k, ..., k) the unilateral deviation dividend of player i is Uki for all i = 1, ..., n and
k ∈ K.

15Unilateral deviation stability is solely focusing on deviation losses and may fail, like risk
dominance (Harsanyi and Selten, 1988), to select a unique payoff dominant strict equilibrium.
This, however, is not a (major) weakness. Its drawback, in our view, is that it neglects the risks
of deviations by more than one player. Its major advantage is its simplicity which is why it is
applied here.
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games Gs,M for s ∈ ϕ (G) do not have to contain two strict equilibria (as in case

of unanimity games G ∈ Γ2). Define therefore the subclass Γ1/2 ⊂ Γ∗ as the class

of binary games with one or two strict equilibria. By assuming that ϕ (·) selects
the unique strict equilibrium in binary games G ∈ Γ1/2�Γ2 we extend ϕ (·) to the

subclass Γ1/2 ⊂ Γ∗ which is ϕ-closed.

The following example demonstrates that the usual definition of s,M -reduced

games renders unilateral stability as inconsistent. Game G with n = 3 and payoffs

X3 X2 Y2 Y3 X2 Y2
X1 4, 4, z 2, 2, 0 X1 0, 0, 0 4, 0, 0
Y1 2, 2, 0 6, 6, 0 Y1 0, 4, 1 5, 5, 5

satisfying z > 0 has the two strict equilibriaX = (X1, X2, X3) and Y = (Y1, Y2, Y3).

The strict equilibrium X is the unilaterally stable solution of G if z > 5/4. For the

X, {1, 2}-reduced game GX,{1,2} of G the unilaterally stable solution is, however,

sM = (Y1, Y2) regardless of the value z. The inclination of player 3 for select-

ing X is completely neglected in the reduced game GX,{1,2}. This illustrates that

unilaterally stable strict equilibria are inconsistent.

Thus consistency of unilateral stability ϕ (·) for Γ1/2 requires another definition

of reduced games. For any G ∈ Γ1/2, any strategy vector s ∈ ϕ (G) and any

non-empty, proper subset M of the player set N = {1, ..., n} define the impact of

unilateral deviation losses by “gone players” as

f (s,M) =
∏
j /∈M

max {uj (s)− uj (s̃j , s−j) , 0}

where s̃j �= sj for all j /∈ M . Extending f (·, ·) to M = N by f (·, N) ≡ 1

one always has f (·, ·) > 0 due to s ∈ ϕ (G) and G ∈ Γ1/2, f (X,M) = ∏
j /∈M

xj

and f (Y,M) =
∏
j /∈M

yj. The f (s,M)-reduced game Gf(s,M) of G is the binary

|M |-person game

Gf(s,M) =
(
(Si)i∈M , (ũi (·))i∈M

)
with Si = {Xi, Yi} and

ũi (s̃M) = f(s,M)
1
|M| · ui (s̃M , s−M) (�)
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for all i ∈ M and all strategy combinations s̃M of active players in Gf(s,M). The

definition of f (s,M) follows from the requirement that players i ∈ M perceive

the intentions of players j /∈M as captured by the solution function ϕ (·) of uni-
lateral stability. It illustrates how the solution function ϕ (·) suggests a definition

of f (s,M)-reduced games Gf(s,M). Let us call a solution f -consistent if it is

consistent with respect to its f(s,M)-reduced games.16

Proposition 5: For all generic binary n-person games G ∈ Γ1/2 the unilaterally

stable strict equilibrium solution is f -consistent.

Proof: If the f(s,M)-restricted game Gf(s,M) of G ∈ Γ1/2 for some proper subset

M of N has no other strict equilibrium than theM -restriction sM of the unilater-

ally stable solution s of G, then sM is also the unilaterally stable strict equilibrium

solution of Gf(s,M) since f(s,M) is positive and since thus sM is the only strict

equilibrium of Gf(s,M).

If Gf(s,M) for M �= N would have another strict equilibrium, say s̃M , in addi-

tion to sM , then due to f (s,M) > 0 the strategy constellation (s̃M , s−M) must

be a strict equilibrium of G. Since (s̃M , s−M) differs from both, X and Y , this

contradicts our definition of binary games G with two strict equilibria X and Y

relying on different strategies for all players. �
16An alternative definition, substituting (�), completely overturns the usual definition of re-

duced games in the sense that “gone” players j /∈M do not leave their strategies but only their
inclinations. Assume

ũi (s̃M) = f (s̃,M)
1

|M| ui (s̃M , s̃−M) (+)

for all strict equilibria (s̃M , s̃−M) of G ∈ Γ1/2 and ũi (s̃M) = 0 otherwise, i.e. if s̃M cannot be
completed to a strict equilibrium of G. Thus the “gone players” j /∈ M let the players i in M
decide for them knowing that due to f (·, ·) these will take into account their incentives. Also
for (+) Proposition 5 is true: For M �= N and s̃M = XM , respectively YM one obtains

∏
i∈M

[
ũi (XM)− ũi

(
Yi, (Xl)l∈M

l�=i

)]
=
∏
j /∈M

xj
∏
i∈M

xi =
∏
l∈N
xl

and ∏
i∈M

[
ũi (YM)− ũi

(
Xi, (Yl)l∈M

l�=i

)]
=
∏
j /∈M

yj
∏
i∈M

yi =
∏
l∈N
yl.

If s = X is unilaterally stable in G, its M -restriction XM is therefore unilaterally stable in
Gf(X,M).
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Different solution functions ϕ (·) will require different functions f (·, ·) to render

them as f -consistent. Since different solutions weigh strategic aspects differently,

their functions f (s,M) will usually react differently to strategic aspects. A more

natural definition of f (·, ·) for a solution function ϕ (·) makes its f -consistency

more desirable.17 Here we have only illustrated how the consistency requirement

can be weakened by introducing f (s,M)-reduced games and how this modifies

the decentralization property of consistency.

7. General games

As in section 5 where we already relied on familiar ideas of equilibrium selection

we will just mention the more or less standard techniques (mostly introduced by

Harsanyi and Selten, 1988) when (due to the specific steps (v), (vi) and (vii)

below) generalizing unilateral deviation stability. The procedure is as follows:

(0) Take an arbitrary game G ∈ Γ!

(i) Perturb G εk-uniformly18, i.e. all minimal choice probabilities (Selten, 1975)

are εk where εk > 0 is sufficiently small; for i = 1, ..., n and any si ∈ Si
represent the choice of si with maximal probability as a pure strategy (see

Harsanyi and Selten, 1988, for details); denote by Gk the resulting (εk-

uniformly perturbed) game!

(ii) Repeatedly and for all players simultaneously for Gk eliminate (strictly) in-

ferior strategies (see the concept of rationalizable strategies as discussed by

Pearce, 1984) and substitute duploid strategies (which yield the same payoff

for all possible strategy combinations of the other players) by their cen-

troid19 (which assigns the same positive probability to all strategies in the

same duploid class) till no further reduction of game Gk is possible!

17Like in cooperative game theory where usually different concepts rely on different definitions
of reduced games different theories of equilibrium selection will focus on different strategic
aspects and will therefore rely on divergent ways of capturing “inclinations of gone players”.

18Whereas positive minimum choice probabilities were introduced by Selten (1975) to define a
necessary condition for sequential rationality, namely perfectness, uniform trembles are already
aiming at an unbiased selection among perfect equilibria.

19The idea here is that different duploid strategies differ only in strategically irrelevant aspects
with no payoff implications whatsoever.
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(iii) If all minimal formations F 1k , ..., F
L
k of Gk have just one equilibrium, namely

s1k, ..., s
L
k , go to (iv); otherwise subject any F lk with multiple equilibria to

a sequence ε ↘ 0 of small payoff perturbations20 (see section 5 above)

and apply this procedure (starting with (i)) to the games F lk (ε); denote by

slk = lim
ε↘0
slk (ε) the limit of the solutions slk (ε) which this procedure yields

for the games F lk (ε)!

(iv) Solve Gk by solving its transformed game Grk (see section 4) resulting from

substituting minimal formations by their solutions!

(v) For any two strict equilibria slk and sl
′
k of Grk with l, l′ = 1, ..., L and l �= l′

define the comparison game Grk (l, l
′) ∈ Γ1/2 with, for all active players i,

strategy set

Ski (l, l
′) =

{(
slk
)
i
,
(
sl
′
k

)
i

}
,

i.e. player i can only use the strategies suggested by the two solution can-

didates, and payoff function

ui (·) = ui (·)
∣∣∣∣∣ n×
j=1

Skj (l,l
′)
!

(vi) Compute the product of unilateral deviation dividends (see section 6) for the

two strict equilibria slk and sl
′
k of Grk (l, l

′) and denote by Rk (l, l′) their ratio!

(vii) For any solution candidate sl
′
k determine the vector

Rk (l
′) = (Rk (l1, l′) , ..., Rk (lL−1, l′))

with non-increasing components Rk (l, l′) with l �= l′, choose the strict equi-

librium s∗k = s
l∗
k ofGrk as the solution whose vectorRk (l∗) is lexicographically

minimal (see Güth, 1992)!

(viii) Choose εk+1 such that εk > εk+1 > 0 and go to (i)!

(ix) Determine the solution s∗ of G as the limit solution21

s∗ = lim
k↗∞

s∗k!

20Whereas strategy trembles are used to guarantee perfectness of equilibria, payoff trembles
are supposed to induce their strictness (see Harsanyi, 1973 and 1975 as well as Harsanyi and
Selten, 1988).

21The mathematical problem of existence and uniqueness of such a limit is discussed by
Harsanyi and Selten (1988).
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A rigorous proof that this procedure determines for all games G ∈ Γ a unique

solution s∗ (G) which by its derivation is a uniformly perfect22 equilibrium is very

demanding, especially proving that the limits, to be determined in steps (iii) and

(ix), always exist. These difficulties or similar ones arise, however, whenever trying

to develop a general theory of equilibrium selection. We can therefore point to

more elaborate treaties of equilibrium selection which discuss the mathematical

difficulties in more detail (e.g. Harsanyi and Selten, 1988).

Notice that the comparison games, defined on stage (v), are all contained in

the ϕ (·)-closed class Γ1/2 for which f -consistency has been discussed in section 6.

Thus the algorithm demonstrates how problems of equilibrium selection in general

games (in Γ) can be boiled down to simpler ones, e.g. in special classes of games

(like Γ1/2), for which f -consistent equilibrium selection is possible.

8. Final remarks

Consistency of equilibria and equilibrium selection could become relevant for stud-

ies of endogenous timing which allow players to act early or later where this is

partly assumed to be publicly observable and partly not (e.g. van Damme and

Hurkens, 1999, Spencer and Brander, 1992, Sadanand and Sadanand, 1996, Güth,

Ritzberger and van Damme, forthcoming, Hamilton and Slutsky, 1990). Consis-

tency would imply robust behavioral plans in the sense that expecting others to

decide early will not question the plans of players who wait. The outcome would

not depend on timing dispositions which are either exogenously given (e.g. by the

extensive or stage form) or endogenously determined.

In non-cooperative game theory it is quite commonly accepted that the solution

should be an equilibrium of the game, but that not all equilibria are reasonable

solution candidates (see, however, Aumann, 1996). To refine the equilibrium

notion or even to select uniquely an equilibrium solution, however, contradicts

22The refinement concept of uniformly perfect equilibria is implicitly required by Harsanyi
and Selten (1988). Its existence can be proved by employing the same technique as in Selten
(1975).
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consistency if the other axioms of the Norde et al. (1996)-impossibility result are

considered as undebatable. Impossibility results tell us that our aspirations are

too naive. Especially, a consistent way of equilibrium selection where the “gone”

players j /∈M just leave their strategy is not only impossible but also undesirable

since such players may have good reasons to strive for one equilibrium rather than

the other(s).

We first have questioned the practical relevance of the non-emptiness requirement

by exploring the generalization of strict equilibria via solutions of minimal forma-

tions. When discussing equilibrium selection our weaker consistency requirement

allows “gone” players to “leave” their incentives for selecting one equilibrium

versus the other(s). Unilateral stability is, of course, only an example how to

select among equilibia. For other concepts a similar justification seems possible

by appropriately modifying the definition of reduced games. Thus there exists

an alternative to the (set valued-) weakening of consistency by Dufwenberg et al.

(2001) who also try to escape the impossibility result by Norde et al. (1996).

One may object against the consistency axiom that it pays attention to all non-

empty subsets M of player set N in the same way. Like the active set of players

in a proper subgame of an extensive form game also certain subsets M of N can

have the property that the optimal behavior of every member i of M depends

only the choices of the players in M (where according to the procedure in section

7 this property has to hold only in εk-uniformly perturbed games with εk > 0).

Harsanyi and Selten (1988) refer to such sets M as cells.

Clearly when solving a reduced game for a player setM , which is a proper subcell

of N , the inclinations of the “gone players” j /∈ M will not matter much since

they do not influence the best reply structure of the reduced game. Restricting

consistency by applying it to reduced games for cellsM of N only would, however,

mean to essentially give up consistency at all. The decentralization property

when solving reduced games for cellsM follows already from the cell property. In

our view, one therefore should generally try to capture the inclinations of “gone

players” j /∈ M and let them become less important by the cell property when

the set M satisfies it.
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