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Abstract 

This paper purports to provide experimental evidence explaining a number of stylized facts associated with the 

behaviour of financial returns, in particular, the fat tailed nature of their distribution and the persistence in their 

volatility. By means of a laboratory experiment, we will investigate the effect of quantity and quality of information, 

present in a financial market, upon its stylized facts, showing how both quality and quantity of information might have 

an impact on volatility clustering and the emergence of fat tail returns. 
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I. Introduction 

It is now well established (Mandelbrot, 1963; Fama, 1963) that changes in asset prices (returns) do 

not have a Normal distribution. In fact, if we assume that returns are normally distributed we have 

to accept an unrealistically high number of ‘outliers’. This leads us to reject the normality 

assumption. 

There is abundant literature studying the empirical features of financial markets. Pagan (1996) 

provided an authoritative survey of these stylized facts and of the econometric techniques how to 

treat them. 

There are also several empirical works that analyse the empirical regularity of those markets, 

i.e. de Vries (1994), Guillaume et al. (1997), and Lux and Ausloos (2002). 

In the last couple of years, the study of behavioural models of dynamic interaction in financial 

markets – Beja and Goldman (1980), Day and Huang (1990), Lux and Marchesi (1999, 2000), Chen 

et al. (2001), Iori (2002), Farmer and Joshi (2002), LeBaron (2000), Gaunersdorfer and Hommes 

(2005), Gaunersdorfer, Hommes and Wagner (2000), Ariofovic and Gencay (2000) and Georges 

(2005) – has brought about a better understanding of some of the key stylized features of financial 

data, namely the fat tails of the distribution of returns and the autoregressive dependence in 

volatility. Some possible general explanations seem to emerge from this literature: first, volatility 

clustering and fat tails may emerge from indeterminacy in the equilibrium of the dynamics. In 

particular, with different strategies performing equally well in some kind of steady state, stochastic 

disturbances lead to continuously changing strategy configurations which at some point generate a 

burst of activity. This type of dynamics can be found already in Youssefmir and Huberman (1997) 

in the context of a resource exploitation model and can be identified in both the papers by Lux and 

Marchesi (1999, 2000).  

 

The purpose of this paper is to verify if the above stylized facts can be reproduced in the 

laboratory, in order to better understand the reason why financial markets exhibit these features. 
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In the next section, we address the issue of informational efficiency market; in section III, we 

describe our data set. In section IV, we present the experimental design. Section V presents a 

theoretical solution of the model. In section VI, the experimental parameters are settled. Section VII 

presents some elementary statistics. In sections IIX-XIII, some stylised facts are analysed. Finally, 

in section XIV, we draw some conclusions. 

 

II. Informational Efficiency of Markets 

Various experimental studies attempted to analyse the role of information within financial markets. 

For the sake of clarity, we can categorize these studies into three groups: 

• Studies addressing the issue of dissemination of information from a group of identical 

informed agents (insiders) to a group of identical un-informed agents. 

• Studies addressing the issue of aggregation of different pieces of information owned by 

different traders and its dissemination. 

• Studies addressing the issue of information’s production. 

 

Within the first line of research, Plott and Sunder (1982) studied the dissemination of 

information by running an experiment in which subjects can trade in each period a single unit of 

asset. The market institution employed was a double auction. Following the experiment, the authors 

found that, allowing traders for replications of the same tasks over the experiment time frame, 

markets’ behaviour closely converged towards the predictions of the rational expectations theory, 

where traders decipher the state of the world by observing market phenomena.  

This approximate convergence (i.e. convergence which occurs with a degree of volatility) was 

also present in an earlier experiment (Smith 1962), where convergence to equilibrium was 

characterised by a persistent noise. Moreover, in a recent work, Hey and Morone (2004) showed 

that whenever complexity increases noise increases as well.  
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With reference to the second group of works, there is clear evidence that information’s 

aggregation problem depends dramatically on market features: information distribution, common 

knowledge, experience of subjects, number of assets and so on. For instance, Plott and Sunder 

(1988) designed an experiment on information aggregation in which traders were endowed with at 

least two assets in each period and the dividends of these assets were state-dependent. At the end of 

each period subjects received the realised dividend, but the information that they got in the trading 

period was noisy. The market institution was a double auction. The authors found that, first, 

whenever dividend varied across traders, the market could not aggregate information, and, second, 

that the market information aggregation process was inefficient.  

The third type of approach was undertaken by several authors (Grossman and Stiglitz, 1980; 

Hellwig, 1980; Verrecchia, 1982; Sunder, 1992; Copeland and Friedman, 1991 and 1992) who 

developed noisy rational expectation models and addressed the issue of product of information by 

deriving equilibria in which asset markets only partially reveal information. In these models, the 

presence of noises impedes informed traders from recovering all the cost of acquiring information, 

hence generating an environment in which information is too costly. Morone and Morone (2005) 

added new insights into the existing literature by addressing the relationship between information 

and wealth distribution in a market context.  

The extremely important aspect of expectation formation and learning in dynamic 

experimental markets with expectations feedback was partially addressed by Smith, Suchanek and 

Williams (1988). Recently, Hommes et al (1999, 2000) and Sonnemans et al (1999) tested for 

expectation formation in a cobweb model (for a survey see also Hommes, 2001).   

As already mentioned, this paper purports to provide experimental evidence explaining a 

number of stylized facts associated with the behaviour of financial returns, in particular, the fat 

tailed nature of their distribution and the persistence in their volatility. By means of a laboratory 

experiment, we will investigate the effect of quantity and quality of information present in a 

financial market upon its stylized facts, showing how both quality and quantity of information 
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might have an impact on volatility clustering and the emergence of fat tail returns along the lines of 

the papers of Lux and Marchesi (1999, 2000). 

 

III. Data description 

The data used in this paper are obtained from two independent sources: experimental data (the 

experiment was run at the laboratory of EXEC at the University of York), and filed data (DAX real 

time series).  

 

The experiment is based on at least two important strands of literature. The first of these 

strands is that of herd behaviour in a non-market context. The key references are Banerjee (1992) 

and Bikhchandani, Hirshleifer and Welch (1992), both of which showed that herd behaviour may 

result from private information not publicly shared. More specifically, both of these papers showed 

that individuals, acting sequentially on the basis of private information and public knowledge about 

the behaviour of others, may end up choosing the socially undesirable option. For some 

experimental evidence see Anderson and Holt (1997), Allsopp and Hey (2000), and Fiore and 

Morone (2005). The second strand of literature motivating this paper is that of information 

aggregation in market contexts. A very early reference is the classic paper by Grossman and Stiglitz 

(1966) which showed that uninformed traders in a market context can become informed through the 

price in such a way that private information is aggregated correctly and efficiently. A summary of 

the progress of this strand of literature can be found in the paper by Plott (2000). A third, though 

less directly relevant, strand is that of the experimental economics literature, which suggests that the 

market may act as a sort of disciplining device on ‘irrational’ behaviour in individual contexts. This 

third strand reconciles, in a sense, the first two strands. 
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The experiment was programmed using the z-Tree1 software of Urs Fischbacher (1999). It 

was piloted at the laboratory of ESSE at the University of Bari, and the main experiment, reported 

in this paper, was run at the laboratory of EXEC at the University of York.  Significant changes 

were made between the pilot and the main experiment in the way that subjects were briefed. At 

York, a Power Point presentation, preset to run at a particular speed, was run on all subjects’ 

computer screens. This was followed by a practice session in which particular subjects were asked 

to perform particular tasks (make a bid, make an ask, buy, sell, and buy one or more signals). The 

briefing period lasted some 40 minutes. An example of the Power Point presentation can be found 

at http://www-users.york.ac.uk/~jdh1/papers/instructions.ppt.  

 

The four experimental data series are composed respectively by 1303, 1545, 813, and 1373 

observations. We analysed also daily changes of the German share price index DAX over the time 

horizon 1959-1999.  This is our benchmark to compare the experimental data to real data. 

 

IV. The experimental design 

As pointed out by Sunder (1995) “capital asset markets are distinguished from other markets by the 

informational role of price and by the duality of traders’ role: each trader may buy and sell asset(s) 

in exchange for money or some other numeraire commodity.” In order to capture this important 

feature we use a single-unit double-auction2 mechanism in which agents are free at any time to 

make bids and ask, and to accept existing asks or bids. This market mechanism is symmetric in that 

both buyers and sellers can actively post and accept prices in a public manner. We adopted this 

trading procedure as it is well known from countless experiments (in simpler contexts) that this 

                                                 
1 z-Tree (Zurich Toolbox for Readymade Economic Experiments) is a software for experimental economics. This 
software package allows to develop and to carry out economic experiments. In this program features that are needed in 
most experiments are generally defined. Among them are the communication between the computers, data saving, time 
display, profit calculation and tools for screen layout. A further strength of the program lies in its versatility: It can be 
used for a wide range of possible experiments such as public good experiments, structured bargaining experiments or 
markets - including double auctions and Dutch auctions (http://www.iew.unizh.ch/ztree/index.php).  
2 “Due to its impressively robust performance, the double auction is probably the most commonly used laboratory 
trading mechanism” (Holt, 1995). 
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mechanism reaches the competitive equilibrium quickly and efficiently (Smith, 1962, 1964; 1976; 

Holt, Langan and Villamil, 1986; Smith and Williams, 1989; Gode and Sunder, 1989, 1991; Davids 

and Williams, 1986; Ketcham, Smith and Williams, 1984; Davids, Harrison and Williams, 1993; 

Plott and Smith, 1978; Mestelman and Welland, 1992; Holt, 1995). 

We have a market composed by n agents; each one is endowed with a quantity of 

experimental money and m units of an unspecified asset. This asset pays a dividend at the end of the 

trading period, but apart of the dividend it is worthless. This dividend is uncertain. There are two 

possible ‘states of the world’- each with equal probability – either the dividend is some positive 

number d, or it is zero. At the beginning of each trading period the true state is determined by the 

experimenter – but not revealed to the agents. They can, however, buy signals – which are partially 

but not totally informative as to the true state of the world. These signals take either the value 1 or 

the value 0. More precisely the probability of getting a signal of 1 is p if the true state of the world 

is that the dividend is d; the probability of getting a signal of 1 is q if the true state of the world is 

that the dividend is zero. More accurately, if a subject receives a signal 1, he will infer that the 

dividend will be with probability p equal to d and with probability q equal to 0, vice versa if he 

receives a signal 0 then he will infer that the asset will pay with probability q a dividend equal to d, 

and with probability p it will pay a dividend equal to 10 (p>q). In most respects this is identical to 

the Bikhchandani et al model, though the experimental set-up differs in two crucial respects.   

• First, signals are costly – each signal costs an amount c.  

• Secondly, agents can buy at any time during the trading period as many or as few 

signals as they want.  

So information is not released sequentially and the number of signals per agent is not 

restricted to 1. Obviously, these differences change the nature of the solution to the model, but these 

changes are necessary in a market environment in which trading takes place continually throughout 

the trading period.  Agents are informed of all the relevant parameters – the positive dividend d, the 

cost of buying a signal c, and the two probabilities p and q. 
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We had four different Treatments, Treatments 1 through 4 each one corresponding to a 

different quadrant in the following diagram: 

 

 

 

 

 

Table 1: Signals’ cost and quality in the four Treatments. 

The Treatments differed in terms of the parameters we used. The key parameters of the 

experiment are the cost of buying a signal, c, and the two probabilities p and q.  It seems natural to 

make these signal probabilities symmetric, so we put p = 1 – q.  We then chose two values for the 

cost c, and two pairs of values for p and q.  The four Treatments consisted of the four possible 

combinations implied. For each Treatment, we had a different Power Point briefing presentation – 

containing the correct parameters.  

 

The payment mechanism that we used to motivate the subjects in our experiment was the 

obvious and natural mechanism: agents start with some experimental money and with m units of the 

asset. During the trading process they can increase or decrease the number of units of the asset that 

they own and, depending upon the prices at which they trade, their stock of experimental money 

will increase or decrease during the period. At the end of each market period the true dividend for 

that period is announced and the appropriate dividend distributed in experimental money to the 

asset owners at the end of the period. Accordingly, agents will end up with a stock of experimental 

money at the end of each trading period – which may be more or less than that with which they 

started that period. An agent’s trading profit for any trading period is the difference between the 

final stock of experimental money and the initial stock. For the experiment as a whole the payment 

Cost and quality of information 

Treatment 1 
low cost/low quality

Treatment 2 
high cost/low 

quality 
Treatment 3 
low cost/high 

quality 

Treatment 4 
high cost/high 

quality 
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to an agent is simply the sum of the profits over all trading periods of the experiment.  There was a 

fixed rate of exchange between experimental money and real money. 

 

Note that agents can make losses. To avoid some of the problems associated with subjects 

making real losses in experiments, we endowed all agents with a participation fee, which could be 

used (if the subject agreed) to offset losses. Once this participation fee was exhausted, any further 

losses had to be covered by the subjects themselves – some subjects chose this option, others chose 

to leave the experiment once they had exhausted their participation fee. 

 

V. Theory 

This experiment is close to the two literatures mentioned above (section III). However, it differs in 

crucial respects from both those literatures, so we cannot use those literatures to help us find the 

theoretical predictions of our model.  However, we can say two things. 

First, we can conclude that the price in the market ‘should’ converge to the true value of the 

dividend – if the market correctly aggregates the information available to the agents. This is the 

conclusion that would be reached by the branch of the literature starting with Grossman and Stiglitz 

(1976). If the true state of the world is that the dividend is d the price ‘should’ converge to d; if the 

true state of the world is that the dividend is zero the price ‘should’ converge to zero. However, we 

note the nature of the theory of that branch of the literature – it is not a theory providing a 

description of the process by which the market converges, but rather a theory of the equilibrium 

state of the price in such a market.  Thus, this branch of the economics literature does not tell us that 

the price will converge to the true value of the dividend. Moreover, we have no theory that tells us 

what is the optimal behaviour of agents in this experiment, though we can identify one possible 

equilibrium – in which no agent does anything. If all except one agent is doing nothing, then it is 

clearly optimal for the remaining agent to do nothing – for this remaining agent can neither buy nor 
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sell (because no one else is selling or buying) and so can only buy signals. But there is no point in 

buying signals as no use can be made of the knowledge gained. 

 So doing nothing is one possible symmetric equilibrium.  We now argue that this is the only 

possible equilibrium in a world populated by risk-neutral agents.  To demonstrate this, we begin by 

noting that the expected per-period payoff for any subject who does nothing must be md/2 because 

each subject is endowed with m units of the asset, each of which is worth either d or 0 with equal 

probability. Suppose now that some subject buys k signals. Because these signals are costly this 

subject must be expecting to make at least md/2 +kc from trading the asset. Because the game is a 

constant sum game, this must imply that the remaining subjects must be averaging md/2 – kc/(n-1) 

from trading the asset.  As this is less than what they would get doing nothing, it is clearly better for 

them to do nothing – from which it follows that our first subject can not be making at least md/2 

+kc from trading the asset. In this case, the purchase of k signals can not be worthwhile. This can 

not be an equilibrium.  

 This would suggest that we would see no trade in a model in which all the agents are risk-

neutral. Similar arguments would suggest that if all agents have the same beliefs about the future 

value of the dividend and if all agents are equally risk-averse then we would again observe no trade. 

However, if different agents have different beliefs or different attitudes to risk then some trade may 

be possible. Consider, for example, a situation in which individual A owns a unit of the asset and is 

more risk-averse than individual B. Suppose they have the same beliefs – that the probability is π 

that the dividend will be d. Then A would be happy to sell his or her unit at any price bigger than 

the P which satisfies the expression u(P) = π u(d) + (1-π) u(0) (where u(.) is A’s utility function, 

expressed relative to his or her present wealth) while B would be happy to buy this unit of the asset 

at any price less than the Q which satisfies the expression v(0) = π u(d-Q) + (1-π) v(-Q) (where v(.) 

is B’s utility function, expressed relative to his or her present wealth). In general, we should be able 

to find a price which satisfies these two conditions – if B is less risk-averse than A. 
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 Thus, if agents have the same beliefs but different attitudes to risk, some trade may be 

possible. The converse situation – in which agents have different beliefs but the same attitude to 

risk - is somewhat different. Suppose A and B know that they have the same attitude to risk, then if 

they can find a price at which one wants to buy and the other wants to sell, what can they infer? 

What they must infer is that they have different beliefs about the probability that the asset is 

valuable.  Let πA denote A’s probability and πB denote B’s probability. Then if there exists a price at 

which A is happy to buy a unit and B is happy to sell a unit it must follow that πA > πB; that is, A 

must be more optimistic than B about the probability that the asset will be valuable. At this point, A 

must infer from the fact that B wants to sell that πA > πB, and B must infer the same from the fact 

that A wants to buy. If they each assume that the other is rational they may conclude that one or 

other or both of them is wrong. 

 But this provides a clue why we might observe trade: everyone thinks that they have better 

information than the others about what the dividend is going to be.  Obviously, this is impossible, 

but we have already argued that anything other than a ‘do-nothing’ situation can not be an 

equilibrium in the usual sense used by economists.  We should stress this point: apart from the 

buying of signals, the game is a constant sum game – there is a total of mnd/2 given by the 

experimenter to the n subjects each market period.  Apart from the buying of signals, each subject 

makes on average md/2 each period. Subjects can guarantee this on average by doing nothing. 

However, the buying of signals is costly and simply makes the average per subject per period 

payoff less than md/2.  So why would anyone buy signals? And why would anyone else trade with 

anyone who has bought signals?  There seems to be no reason for any activity in our experiment.  

 So where does that leave us?  It leaves us with some very simple predictions. First, if we 

believe in equilibrium theory in games (which is concerned more with the process than the 

outcome), then we would expect to see no activity at all.  Second, if we believe in the predictions of 

the Grossman and Stiglitz branch of the literature (which is concerned with outcomes rather than 

processes), we would expect to see the price converging to the true dividend. But this leaves 
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unanswered the question as to how the market converges. If we believe it converges because 

everyone thinks that they are better at predicting the true future dividend, then we leave open also 

the possibility that it converges to the wrong value.  But note the paradoxical nature of all of this. If 

an agent can predict the future value of the asset and can trade on that information (buying at a 

price less than d when the asset is going to be valuable and selling at a positive price when the asset 

is going to be worthless) the agent can make a profit.  But this must be at some other agent’s 

expense. As all agents know this, why might we observe any trade? 

 

VI. Experiment Setting 

We had n = 15 agents, each of whom was endowed with 10 Sterling Pounds of ‘experimental’ 

money (actually equivalent to real money as the exchange rate was one for one) and 10 units of the 

asset. The dividend on each unit of the asset was either (d=) 10p or 0p, it is randomly determinated 

at the beginning of each period and it is constant in the period. The experiment consisted in 4 

practice periods and 10 real periods. Players were paid only for the profits made over the 10 real 

periods. Each period lasted for 4 minutes; the whole experiment lasted a bit more than one hour and 

thirty minutes, including reading instructions and the subjects’ payment.    

As noted above, the key parameters are the cost of buying a signal c, and the two probabilities 

p and q. We took two values for c, 4p and 6p, and two pairs of values for p and q, which were set 

respectively as: 3/5 and 2/5, and 4/5 and 1/5. Combining these values produced four different 

Treatments, as described in Table 1. Subjects can buy information at any time when the market is 

open. 

With regard to c, the signal’s cost, we predicted that higher values would induce agents to buy 

less signals. This would increase the degree of fuzziness of the market system (due to a scarcity of 

information). In turn, this might result in more information available in the market. We might 

therefore expect less noise in better informed Treatments. As far as the two probabilities are 

concerned, as p rises and q falls, the signals become more reliable – hence, the quality of the 
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information present in the system improves – and this might produce some considerable effect on 

price volatility. We shall expect less volatility in Treatment 4 compared to Treatment 1. However, a 

comparison between Treatment 2 and Treatment 3 would not be as straightforward.  

 

 

c = 4p c = 6p
p = 3/5 and      

q = 2/5

p = 4/5 and      
q = 1/5 Treatment 3 Treatment 4

Treatment 1 Treatment 2

 

Table 2: Quality and cost of information in the four Treatments 

 

Subjects’ pay-off depends considerably upon the parameters choice, but evaluating a possible 

earning interval without information on agents’ strategy is a very complicated task.  

A possible strategy is “doing nothing”. In this case, agents would get a dividend of 10p with 

probability 0.5 and a dividend of 0p with probability 0.5. Their expected pay-off will be 50p in each 

trading period, and hence, their overall pay-off will be £5 plus the £3 of participation fee. Thus, on 

average, subjects made £8 from participating in this experiment.3 

However, there was a considerable variation around this average figure: some subjects gained 

less than their participation fee whereas others got paid a considerably higher sum than the 

participation fee plus the average dividend.  

 

VII. Some elementary statistics 

We have already noticed that empirical data in financial markets are not normally distributed. Table 

1 reports some elementary statistics for the returns of the DAX and our four experimental 

Treatments. 

                                                 
3 Since the experiment is a zero-sum game for each subject, this will be the amount paid out on average. 
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It is clear that all five distributions exhibit excessive kurtosis. This implies that the 

experimental financial market, like real markets, exhibits more probability mass in the tails and in 

the centre compared to a Normal distribution. Additionally, the Bera –Jarque test for normality 

leads to a rejection of its null hypothesis. 

Bera-Jarque 
test 

44908.312 
(0.000) 

626.579 
(0.000) 

5094.409 
(0.000) 

1407.571 
(0.000) 

11223.906 
(0.000) 

      

Table 3: Elementary statistics 
 

Now, we will take a closer look at the statistical characteristics of our experimental data 

sets. More precisely, we will investigate whether and how the experimental market compares with 

the stylised facts observed in real financial markets: Unit Root, Fat Tail, Cluster Volatility and 

Autocorrelation. 

 

VIII. Unit root property 

“A realistic market should yield a dynamics which appears to be close to a random walk. We, 

therefore, perform a typical test for the presence of a unit root in both our experimental and filed 

time series using the Augmented Dickey-Fuller test” (Lux and Schornstein, 2002). The usual 

finding in financial markets is non-stationarity for the price time series and stationarity for its first 

difference, i.e. the returns. Table 4 reports the outcome of the Augmented Dickey-Fuller test. For 

each case, the time series have been divided into 10 sub-samples and the test has been run on each 

sub-sample.  

 DAX Treatment 1 Treatment 2 Treatment 3 Treatment 4 
Mean 0 0 -0,001 -0,005 0 
S.D. 0,005 0,252 0,213 0,418 0,261 

Skewness -0.3216 -0.0826 0.0437 0.0602 -0.0185 
Kurtosis 10.4481 3.3944 8.8983 6.4489 14.0119 
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Now, we can try to categorise the four Treatments. It seems that we can divide them into 

two groups. Treatment 1 and Treatment 2 completely fail to exhibit non-stationarity in the price 

series. On the other hand, Treatment 4 has a unit root in two out of ten periods, and Treatment 3 has 

a unit root in seven out of ten periods. Note that the DAX exhibits a unit root in eight out of ten sub-

samples. This is an interesting result, since in Treatments 1 and 2 the quality of the signals is very 

poor (a signal is informative with probability 0.6 and is misleading with probability 0.4) and thus 

the aggregated information is not very informative. For this reason price fluctuates around the ‘un-

informed’ expected price4. On the other hand, in Treatments 3 and 4, the quality of the information 

is higher (a signal is informative with probability 0.8 and is misleading with probability 0.2). Thus 

the price does not fluctuate around the ‘un-informed’ expected price but converges (in average) to 

the correct price (i.e. the true dividend). 

 

IX. Fat tail phenomenon 

In section III, we reported that our four experimental financial markets (as well as the DAX) exhibit 

excessive kurtosis, and we noticed that return distributions exhibit more probability mass in the 

centre and in the tail of the distribution. In the following figures, it is clear what we meant by fat 

tails. In fact, it is possible to see how the distributions of the returns are leptokurtotic. 

                                                 
4 If all subjects are un-informed, i.e. there is no information at all in the market the asset expected price is simply 
0.5x10+0.5x0.  

Time Series Range of λ             
Min               Max 

No. of 
rejections for 

one-sides test at 
95% level 

No. of rejections 
for two-sides 

test at 95% level 
DAX 0,4148 1,0038 2 out of 10 2 out of 10 
Treatment 1 -0,2788 0,2674 10 out of 10 10 out of 10 
Treatment 2 -0,0891 0,3301 10 out of 10 10 out of 10 
Treatment 3 -0,1763 0,9719 3 out of 10 3 out of 10 
Treatment 4 -0,0724 0,9635 8 out of 10 7 out of 10 

Table 4:  Augmented Dickey-Fuller test 
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Returns' distribution in the DAX
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Returns' distribution ot treatment 3
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We have to note that the kurtosis is, in a certain sense, a poor measure of deviation from 

normality. For this reason, we need to refer to a sharper characterization of the empirical 

distribution. It is now well known that the distribution of returns belongs to the class of the ‘fat tail’ 

distributions. These distributions exhibit a hyperbolic decline of probability mass5. 

 

 Treatment 1 Treatment 2 Treatment 3 Treatment 4 DAX6 

Hill 10% 2,527 1,898 2,320 1,013 2,945 

Hill 5% 6,035 2,905 3,422 1,723 2,974 

Hill 2.5% 7,684 6,177 4,930 5,937 3,105 

Table 5: Hill estimators for the five distributions 

                                                 
5 For a more detailed analysis see Lux (1996). 
6 The New York Stock Exchange Composite Index, the US Dollar – DM exchange rate and the price of gold exhibits 
similar figures, cf. Lux (1996). 
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The visual impression of fat tails is also confirmed by the above Table 5, which reports the 

Hill estimators for the five distributions (i.e. the four experimental Treatments and the DAX).  

The Hill estimator is calculated according the following equation, where m is the number of 

observations in the corresponding tail of the distribution.  

( )∑
=

−+− −
= m

i
mnin xx

m

1
1 lnln

α  

The tail index gives us information about the “fatness” of the tails of the distributions. It is 

obtained ordering the return series in decreasing order and the last i% as the i% of the tail. In fact, 

given a tail index, the biggest integer number smaller than the tail index is the number of finite 

moments of the distribution. The Hill estimators estimate the tail index.   

Empirical studies show that the Hill estimators usually lie in the range of [2.5, 5]. Examples 

include Koedijk, Schafgans and de Vries (1990), Jansen and de Vries (1991), Loretan and Phillips 

(1994), Longin(1996), Lux (2002) and Lux and Ausloos (2005). 

From Table 4, we can argue that all our four Treatments look like a real financial market, 

even though for a tail size of 2.5% the tails seems not to be very fat. It is interesting to note that in 

Treatment 2 and Treatment 4 the bursts are so strong that even tail indices below 2 were found. 

Remembering that in Treatment 2 and 4 the cost of information was high compared to Treatment 1 

and 3, it seems that markets in which the information is more expensive have larger price changes.  

We can try to rank our four Treatments according to their tail index. Treatment 3 and 

Treatment 2 seem to be very good approximations of a real financial market, whereas Treatment 4 

exhibits too fat tails at both 10% and 5% tail size and too thin tails at 2.5%. Treatment 1 exhibits 

realistic tails at 10% level but too thin tails at both 5% and 2.5% levels.  

These results seem to be quite encouraging and the “rejection” of the fat tail hypothesis at 

2.5% level could be related to the sample size (1303, 1545, 813, and 1373 in Treatment 1, 2, 3 and 4 

respectively). It could be of some interest to note that Lux and Sornette (2002) demonstrated that 
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the prevalence of a rational bubble component would lead to an Hill tail index estimator smaller 

than 1, which would imply non existence of the mean and variance of the data.  

 

X. Volatility clustering 

Plotting the time series of returns it is immediately evident that the results of our experiment are 

different from previous experiments on financial markets (Forsythe and Russell, 1990; Forsythe, 

Palfrey and Plott, 1982; Plott and Sunder, 1982; Plott and Sunder 1988; Redrawn and Sunder, 1992; 

Friedman, Harrison and Salmon, 1984). In fact, we do not have the usual fast convergence to 

equilibrium, but we see periods of tranquillity interrupted by periods of turbulence. The time series 

plotted in the figures 7 and 8 below are quite similar to the empirical ones. Periods of quiescence 

and turbulence tend to cluster together. 

Figure 6 

This fact was already pointed out by Mandeldrot (1963), but it was by and large neglected until 

recently. The volatility cluster regularity (which is particularly clear in figures 6, 7, 8, 9 and 10) 

suggests that there is autocorrelation in the scale of the process, i.e. in the second moments. 

Also the figure below exhibits clustered volatility in the returns. Treatment 1 and Treatment 

2 seem to capture this phenomenon pretty well. 
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Figure 7 

Figure 8 

 

On the other hand, Treatment 3 and Treatment 4, even though they exhibit clustered 

volatility, seem to be different from a real financial market. A simple explanation could be that, 

because the quality of information in the market is higher compared to Treatment 1 and Treatment 

2, the invisible hand is less trembling7. 

                                                 
7 With the notion of trembling we refer to the trembling hand used by Harsanyi and Selten for modelling equilibrium 
perfection. A player who wants to play one action might through a slip of the hand take another. That is, players could 
make uncorrected mistakes (tremble) that lead to unexpected events. 
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Figure 9 

Figure 10 

 

There is abundant literature that studies this phenomenon. Gaunersdorfer and Hommes 

(2005) proposed a dynamical system with two attractors, a stable steady state and a state limit cycle. 

When the system is buffed with dynamic noise, irregular switching between close to steady state 

fluctuations with small price changes and almost periodic fluctuations with large price changes 

occurs that clustered volatility emerges from stochastic dynamics with multiple attractors.  
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XI. Absence of autocorrelation 

Autocorrelation is often insignificant in raw returns, but highly significant in the volatility 

measures, i.e. squared returns and absolute returns. The absence of autocorrelation is a very well-

known fact in financial data.  

In figures 11-13, we plotted the autocorrelation functions of the DAX raw returns, squared 

returns and absolute returns in the period 1959-1999 (daily observations). For each time series we 

computed the autocorrelation functions for 100 lags. In figure 11, it is evident that the 

autocorrelation of raw returns is not significantly different from zero.  
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Figure 11 

On the other hand, considering the squared returns, we can observe a very long autocorrelation, 

and it is even larger in the case of absolute returns.  
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Figure 12 

For squared and absolute values the temporal independence is strongly rejected.  
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Figure 13 
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These results are common to all financial markets. In figures 14-16 we report the 

autocorrelation of returns for Treatment 1 of our experiment. It is evident that returns, squared 

returns and absolute returns exhibit, temporal independence contrary to financial market empirical 

evidence. 
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Figure 14 
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Figure 15 
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Figure 16 
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Treatment 2 (figures 17-19) exhibits autocorrelation functions with features typically characterizing 

financial markets. In fact, the raw data are completely uncorrelated, the squared returns have very 

long correlation and the absolute returns exhibit longer and higher autocorrelation. 
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Figure 17 
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Figure 18 
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Figure 19 
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Figure 20 
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Figure 21 

 
 

Figure 22 
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Figure 23 
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Figure 24 
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Figure 25 
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Figure 26 
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Also Treatment 3 and 4 (figures 20-22 and figures 23-25 respectively) have this feature but it is 

weaker compared to Treatment 2.  

To investigate better the autocorrelation structure, we applied the Box-Ljung test (Table 6) to 

the autocorrelations up to lags 8, 12, 16 for the raw data as well as the squared and the absolute 

returns.  

 

 Treatment 1 Treatment 2 Treatment 3 Treatment 4 DAX 

 8 lags 12 lags 16 lags 8 lags 12 lags 16 lags 8 lags 12 lags 16 lags 8 lags 12 lags 16 lags 8 lags 12 lags 16 lags 

Raw returns 353.56 287.26 295.73 386.51 504.60 1073.42 216.72 305.89 658.69 418.19 444.48 554.08 102.46 1641.57 3590.50

Significance 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Squared returns 354.32 292.99 299.50 395.44 623.38 1431.08 218.70 344.46 803.71 420.43 510.93 659.40 117.41 1926.47 4682.58

Significance 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Absolute returns 356.73 322.26 315.29 401.30 769.32 1785.33 218.70 344.46 803.71 440.36 528.58 714.63 121.41 2204.23 5592.22

Significance 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Table 6: Box-Ljung test 

It is clear that we have to reject the null hypothesis that the absolute values of the 

autocorrelation coefficients are not significantly different from zero at both the 0.05 and 0.01 

significance level (for raw, and for squared and absolute returns as well) . 

The volatility autocorrelation in real financial time series decays hyperbolically. In order to 

check if the experimental data exhibit long term memory, we used the nonparametric estimator of 

Geweke and Porter-Hudak (1983) in which the null hypothesis of no long memory persistence is 

tested against the alternative of long memory process. GPH test provides an estimate of the 

fractional integration parameter d. The estimated d’s are also list in Table 7.  

 
 Treatment 1 Treatment 2 Treatment 3 Treatment 4 DAX 

 Raw Absolute Squared Raw Absolute Squared Raw Absolute Squared Raw Absolute Squared Raw Absolute Squared
Est. d -0.4046 0.2788 0.2904 -0.1961 0.5376 0.5706 -0.0060 0.3632 0.1861 0.0298 0.4571 0.2819 0.0510 0.3434 0.1912 
sd  0.1253 0.1253 0.1253 0.1194 0.1194 0.1194 0.1462 0.1462 0.1462 0.1233 0.1233 0.1233 0.0698 0.0698 0.0698 
t-stat -3.2285 2.2249 2.3176 -1.6419 4.5022 4.7789 -0.0410 2.4837 1.2726 0.2422 3.7091 2.2870 0.7305 4.9167 2.7374 
p-value  0.0012 0.0261 0.0205 0.1006 0.0000 0.0000 0.9673 0.0130 0.2032 0.8087 0.0002 0.0222 0.4651 0.0000 0.0062 
  

Table 7: GPH test 
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XII. Comparing the four Treatments 

We now compare more systematically the four Treatments, in order to summarize the effect of 

quality and quantity on information in our experimental financial markets. In table 8 is reported a 

summary of all the statistical analysis carried out in this paper. Treatment 1 is characterised by a lot 

of noise and volatility and a great deal of market activity. Treatment 2 is also characterised by a lot 

of noise and volatility and a great deal of activity too. In Treatment 3, there is generally less noise 

and much less volatility compares to the first two Treatments. In Treatment 4, compared to 

Treatment 3, there was much more heterogeneity in the time series, though there was a similar form 

of nervousness at the beginning of the Treatment. Probably, the most natural way to investigate the 

effect of quality of information is to compare Treatment 1 with Treatment 3 and to compare 

Treatment 2 with Treatment 4. Concerning nonstationarity the price series of Treatment 1 fail to 

exhibit nonstationarity while the price series of Treatment 3 exhibits nonstationarity. We got similar 

findings comparing Treatments 2 and 4: Treatment 2 seems stationary while Treatment 4 seems 

nonstationary. 

Signal Autocorrelation 
Treatment 

Quality Cost 
Volume Signal Nonstationarity Hill 

Volatility 

clustering Raw Squared Absolute 

T1 Low Low 1303 278 No Too thin Yes Uncorrelated Uncorrelated Uncorrelated 

T2 Low High 1545 806 No Ok Yes Uncorrelated Correlated Correlated 

T3 High Low 813 266 Yes Ok No Uncorrelated Correlated Correlated 

T4 High High 1373 423 Yes Too fat No Uncorrelated Correlated Correlated 

  

Table 8: Summary of statistical analysis 

Treatment 1 (see table 5) exhibits realistic tails at 10% level but it is too thin at both 5% and 

2.5%. Treatment 2 and Treatment 3 have a very realistic tail index at all levels. Finally, in 

Treatment 4 the Hill index is too fat at 5% and 10% and too thin at 2.5%.  
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It seems reasonable to state that information play an important role. Markets with better or more 

information result in a (non realistic) random walk like behaviour (i.e. less fat tails and less 

clustering). 

     

XIII. Conclusion 

In this paper, we investigate the characteristics of an experimental financial market, and we 

compare it to a real one. The paper is focused on the fat tail property of returns and on cluster 

volatility. Our experimental markets exhibit important and well known features: excess kurtosis 

(see table 3), and in accordance with this the Hill coefficients lie (almost for all the Treatments) in 

the appropriate interval. Concerning volatility clustering Treatment 2, 3 and 4 exhibit uncorrelated 

squared and absolute return.      

Our results suggest that the volatility of prices is lower (with the implication that herding is less 

likely) when the quality and quantity of information in the market is higher.  The quality of 

information is a function of the noisiness of the signal (which is exogenous in our experiment), 

whereas the quantity of information (the number of signals purchased) is endogenous and seems to 

be a rather complicated function of the cost and noisiness of signals, and of the behaviour of the 

other participants in the experiment (which depends, inter alia, on their attitude to risk). What we 

are saying suggests that the sharing of information in this manner in a market context might lead to 

fewer herds – and less activity.  

First, we obtain results concerning the relationship between information quality and market 

efficiency: 

• If the quality of the information is low, market seems to fail to aggregate information 

and the price fluctuate around the un-informated price. 

• If the quality of the information is high, the invisible hand seems to work ‘properly’.  

Second, we obtain results relating the cost of information to the leptokurtosis of the returns 

distribution: 
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• The more expensive the information, the more leptokurtic the returns distribution are. 

We, finally, have evidence that dissemination and aggregation of information through the 

trading mechanism is possible, but it is no longer defensible to argue that rational expectations can 

be achieved instantaneously, or precisely. 
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